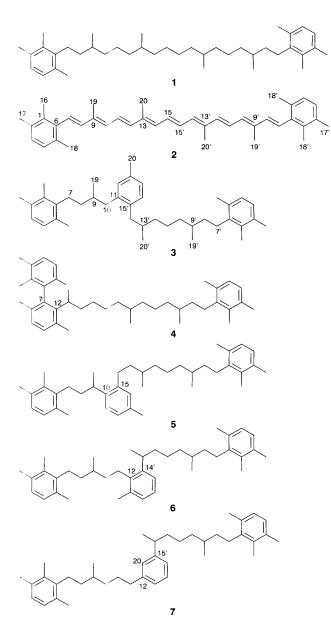
Cyclisation and Aromatisation of Carotenoids during Sediment Diagenesis


Jaap S. Sinninghe Damste,*^a Jürgen Köster,^a Marianne Baas,^a Martin P. Koopmans,^a Heidy M. E. van Kaam-Peters,^a Jan A. J. Geenevasen^b and Cor Kruk^b

^a Netherlands Institute for Sea Research (NIOZ), Department of Marine Biogeochemistry, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands

^b University of Amsterdam, Faculty of Chemistry, Organic Chemistry Unit, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands

A novel diaryl isoprenoid with an additional aromatic ring ($C_{40}H_{58}$), formed from the diaromatic carotenoid isorenieratene by cyclisation and aromatisation during sediment diagenesis, is identified in carbonaceous sedimentary rocks.

A number of carbonaceous sediments contain substantial amounts of the diaryl isoprenoid isorenieratane $1,^{1-3}$ which is derived from the diaromatic carotenoid isorenieratene 2, a carotenoid exclusively biosynthesized by photosynthetic green sulfur bacteria (Chlorobiaceae).⁴ Upon GC analyses of the polyaromatic fractions of extracts of a number of sediments (*e.g.* Kimmeridge Clay, Schistes Cartons, Calcaires en Plaquettes, Allgäu Formations) compound **3** elutes just before **1** and possesses a mass spectrum [*m*/*z* 538(20), 173(12), 134(36), 133(100), 119(22%)], suggesting that it is isorenieratane **1** with

an additional aromatic ring formed by cyclisation and aromatisation of the isoprenoidal acyclic part of **1**. The MS, however, does not reveal any strong indications for the position of the additional ring. This is not surprising since MS of 1,2-dialkylbenzenes hardly contain fragment ions due to cleavage of one of the alkyl side chains β to the aromatic ring, but instead are dominated by a fragment formed by loss of both alkyl side chains.⁵ Indeed, the MS of **3** contains a fragment ion at *m*/*z* 119, which is more abundant than in the MS of **1** (22 *vs.* 10%), suggesting the presence of a trialkylbenzene moiety.

The genetic relationship between 1 and 3 was further established by comparison of their ^{13}C content in two sediments (Table 1) as determined by isotope ratio monitoring-GC-MS. Both 1 and 3 are uniquely enriched by *ca*. 14 parts per thousand relative to lipids derived from algae. This is consistent with their derivation from photosynthetic green sulfur bacteria since these organisms fix CO₂ through the reversed TCA cycle leading to biomass anomalously enriched in $^{13}C.^{6}$

To fully determine the structure of 3, it was isolated from the sedimentary rock extract of the Lower Jurassic Allgäu Formation by column chromatography and subsequent reversed phase HPLC using a Polygosil C_{18} preparative column eluting with MeOH-EtOAc (90-10; v/v). The purest fraction (2.3 mg) consisting of 74% of 3 (other 26% consisted of a complex mixture of hydrocarbons, none representing more than 3% of the total fraction) was analysed by ¹H and ¹³C NMR.[†] These data allowed discrimination between the five possible isomers 3-7, which can be formed by cyclisation and aromatisation of 1. From the COSY spectrum of 3 it was deduced that all three aliphatic methyl groups were coupled with protons attached to carbon atoms not α to the aromatic rings as indicated by their chemical shifts in the range δ 1.5–1.8. Furthermore, four CH₂ groups next to an aromatic ring were clearly revealed in the COSY spectrum. Since 3 is the only structure which shows these features, its identity was established. Other shifts are in agreement with this assignment.

The similarity in structure and ${}^{13}C$ content of 1 and 3 establishes a direct link between these sedimentary components and their precursor, isorenieratene 2. The identification of 3 is the first evidence for the process of cyclisation and aromatisation of carotenoids during sediment diagenesis. In fact, the formation of 3 is only one step in this process since components

Table 1 $\delta^{13}C$ (parts per thousand vs. PDB^a) values of selected sedimentary components

Formation name	δ(¹³ C)			
	1	3	Pristane	Phytane
Kimmeridge Clay	-16.6 +0.3 ^b	-16.3+0.2	-30.0 ±0.3	-30.1 ±0.5
Allgäu	-19.0 ±0.4	-19.0 ± 0.3	-33.5 ±0.8	-33.5 ±0.2

^{*a*} PDB indicates PeeDee belemnite, the stable carbon isotope standard. ^{*b*} Standard deviation from three replicates with the isorenieratene carbon skeleton containing up to four additional (condensed) aromatic rings have been identified in sediments.⁷

This work was supported by a PIONIER grant to J. S. S. D. from the Netherlands Organisation for Scientific Research (NWO). We thank the Koninklijke/Shell Exploratie en Productie Laboratorium and NWO for providing studentships to M. P. K. and H. M. E. v.K.-P., respectively. Shell Internationale Petroleum Maatschappij is gratefully acknowledged for financial support for the irm-GC-MS facility. This is NIOZ Division of Marine Biogeochemistry contribution no. 377.

Received, 27th October 1994; Com. 4/06567K

Footnote

[†] Selected NMR data for **3**: ¹H (400 MHz, CDCl₃), 2.65 (m, CH₂, C-7'), 2.58 (m, CH₂, C-7), 2.55 (m, CH₂, C-10), 2.41 (m, CH₂, C-14'), 2.23 (s, Me, C-20), 1.86 (m, CH, C-9), 1.68 (m, CH, C-13'), 1.52 (m, CH, C-9'), 1.00 (d, J 6.7 Hz, Me, C-19), 0.97 (d, J 6.7 Hz, Me, C-19'), 0.85 (d, J 6.7 Hz, Me, C-20); Shifts for C-8, C-8', C-10' and C-12' were not determined. ¹³C (100 MHz; CDCl₃) 19.6 (Me, C-19'), 19.5 (Me, C-19), 19.5 (Me, C-20'); these assignments may be interchanged, 21.0 (Me, C-20).

References

- 1 J. Schaefle, B. Ludwig, P. Albrecht and G. Ourisson, *Tetrahedron Lett.*, 1977, **41**, 3673.
- 2 R. E. Summons and T. G. Powell, *Geochim. Cosmochim. Acta*, 1987, **51**, 557.
- 3 M. E. L. Kohnen, S. Schouten, J. S. Sinninghe Damsté, J. W. de Leeuw, D. Merrit and J. M. Hayes, *Science*, 1992, **256**, 358; A. G. Requejo, J. Allan, S. Creany, N. R. Gray and K. S. Cole, *Org. Geochem.*, 1992, **19**, 245; W. A. Hartgers, J. S. Sinninghe Damsté, A. G. Requejo, J. Allan, J. M. Hayes, Y. Ling, T.-M. Xie, J. Primack and J. W. de Leeuw, *Org. Geochem.*, 1994, **22**, 703.
- 4 S. Liaaen-Jensen, in *Marine Natural Products*, ed. D. J. Faulkner and W. H. Fenicall, Academic, New York, 1978, p. 1; S. Liaaen-Jensen, in *Photosynthetic Bacteria*, ed. R. K. Clayton and W. R. Sistrom, Plenum, New York, 1978, p. 233.
- 5 J. S. Sinninghe Damsté, A. C. Kock-van Dalen, J. W. de Leeuw and P. A. Albrecht, *Geochim. Cosmochim. Acta*, 1991, **55**, 3677.
- 6 I. Quandt, G. Gottschalk, H. Ziegler and W. Stichler, *FEMS Microbiol. Lett.*, 1977, 1, 125; J. S. Sinninghe Damsté, S. G. Wakeham, M. E. L. Kohnen, J. M. Hayes and J. W. de Leeuw, *Nature*, 1993, **362**, 827.
- 7 M. P. Koopmans, J. Köster, F. Kenig, H. M. E. van Kaam-Peters, S. Schouten, W. A. Hartgers, J. W. de Leeuw and J. S. Sinninghe Damsté, *Geochim. Cosmochim. Acta*, to be submitted.